INDIAN SCHOOL MUSCAT

FINAL TERM EXAMINATION

SET A/B/C

FEBRUARY 2019

CLASS XI

Marking Scheme – CHEMISTRY [THEORY]

Q.NO.	Answers	Marks	
		(with split	
		up)	
SET A1	Ununbium, Uub	$\frac{1}{2} + \frac{1}{2}$	
SET B5	OR		
SET C2	$(n-1)d^{1-10}ns^{1-2}$	1	
SET A2	BiH ₃ , SbH ₃ , AsH ₃ , PH ₃ , NH ₃	1	
SET B3			
SET C4			
SET A3	4s has lower (n+l) value hence lower energy and filled before 3d	1	
SET B1			
SET C5			
SET A4	4f,14e	$\frac{1}{2} + \frac{1}{2}$	
SET B2	Or		
SET C3	Diagram		
SET A5	Statement	1	
SET B4			
SET C1			
SET A6	Minimum energy required to eject electrons from the surface of a metal	1	
SET B12	Node-3D region around the nucleus where probability of finding electron is zero	1	
SET C9			
SET A7	Ethene -sp ² hybridised[energy level +orbital dia]	2	
SET B11	OR		
SET C10	ClF ₃ -3bp,2lp	1	
	H_3O^+ -3bp,1lp	1	
SET A8	$\Delta H = [615 + 4x414 + 3x498] - [4x741 + 4x464] = -1055 \text{kJ/mol}$	$\frac{1}{2} + \frac{1}{2} + 1$	
SET B10	OR		
SET C11	$\Delta G = \Delta H - T\Delta S = 77200 - [400 \times 122] = 28400 \text{J/mol}$	$\frac{1}{2} + \frac{1}{2} + 1$	
SET A9	Any two	1 each	
SET B9			
SET C12			
SET A10	a)3-Ethyl-6-methylhept-3-enal	1	
SET B8	b)5-Methylhexan-3-one	1	
SET C7			
SET A11	m=1000x3/1000x1.25-3x58.5=2.79moles/kg	$\frac{1}{2} + \frac{1}{2} + 1$	
SET B7			
SET C6			
SET A12	a) $\lambda = h/mv = 6.6 \times 10^{-34} / 2.2 \times 10^{-3} \times 300 = 1 \times 10^{-29} \text{m}$	1/2 + 1/2	

SET B6	b) $E=hv=6.6x10^{-34}x3x10^{15}=19.8x10^{-19}J$	1/2 + 1/2		
SET C8				
SET A13	a)Different species with same electronic configuration. Na ⁺ [any one]	1+1		
SET B20	b) cations have greater effective nuclear charge per e			
SET C18	b) cations have greater effective fidelear charge per c	1		
	a) control atom contains more than 00 DCl. CE	1+1		
SET A14	a) central atom contains more than 8e PCl ₅ , SF ₆			
SET B21	b) NH ₃ , as the dipoles are arranged along the same direction	$\frac{1}{2} + \frac{1}{2}$		
SET C19	OR			
	i)any one difference	1		
	ii)Be ₂ : $\sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^2$	1		
	B.O=4-4/2=0	1		
SET A15	a) difference	1+1		
SET B19	b)12-16 compounds are formed by group 12 elements and group 16 elements with a	1		
SET C23	valence of four e			
	OR			
	i) no force of attraction or repulsion between gas molecules/volume of gas are	1		
	negligible	1		
	ii) $2xM_{ox}=5x28$	1		
	,	1		
CET A16	$M_{\text{ox}} = 70 \text{g/mol}$	1/1-		
SET A16	$d = zM/a^3N_a$	½ each		
SET B17	$M=6.22x(4.077x10^{-8})^3x6.022x10^{23}/4=63.459g$			
SET C15	$r=a/2\sqrt{2}=4.077\times10^{-8/2}\sqrt{2}=1.4\times10^{-8}$ cm			
SET A17	a) At absolute zero, entropy of a perfectly crystalline substance is zero	1		
SET B18	b) derivation C_p - C_v = R	2		
SET C20				
SET A18	$Cr(OH)_3 \rightarrow CrO_4^{2-}$	1/2		
SET B15				
SET C14	$IO_3^- \rightarrow I^-$	1/2		
	20 (01) 10 = 1 20 0 2 41 1 1 0			
	$2Cr(OH)_3 + IO_3^- \rightarrow I^- + 2CrO_4^{2-} + 4H^+ + H_2O$	1		
	2C*(OII) + IO = + 4OII= + I= + 2C+O ² = + 5II O			
	$2Cr(OH)_3 + IO_3^- + 4OH^- \rightarrow I^- + 2CrO_4^{2-} + 5H_2O$	1		
SET A19	a) Li due to small size can't stabilize larger peroxide ion	1		
SET B16	5 1	1		
	b) alkaline earth metals contain two electrons per element to show greater metallic	1		
SET C13	property	1		
GET A 20	c) KHCO ₃ is soluble and can't be precipitated	1		
SET A20	a) SiO ₄ ⁴⁻	1		
SET B14	b) zeolites are aluminosilicates eg: ZSM-5/any eg	1+1		
SET C16				
SET A21	a) $P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2$	1		
SET B13	b) $2BF_3 + 6NaH \rightarrow B_2H_6 + 6NaF$	1		
SET C17	c) $SiO_2 + HF \rightarrow SiF_4 + 2H_2O$	1		
	OR			
	Structures	1 each		
SET A22	a)i)carbonates and sulphates of calcium and magnesium	1/2 + 1/2		
SET B22	ii)hydrogen carbonates of calcium and magnesium			
SET C24	b) compounds of hydrogen with p-block elements.	1		
	<u>, , , , , , , , , , , , , , , , , , , </u>			

	e rich: H ₂ O [any two]	½ each			
	e deficient:BH ₃				
	e presice : CH ₄				
SET A23	$X = C_6H_6$, $Y=C_6H_5CH_3$, equations	1+1+1			
SET B24	OR				
SET C22	equations	1 each			
SET A24	a)BOD is the amount of oxygen required by the bacteria to break down the organic	1			
SET B23	matter present in certain volume of a sample of water.				
SET C21	b)When excess of fertilizers are washed into water bodies it causes a dense growth				
	of plant which kills the organisms by depriving them of oxygen and leads to loss of biodiversity- Eutrophication				
	c)Green chemistry is the utilization of the existing knowledge and principles of				
	chemistry to reduce the adverse impact on environment.				
SET A25	a) LeChatelier's	1			
SET B27	b) i)r _f increases ii) r _b increases	1 + 1			
SET C27	c) $\text{Kc}=2x10^{10}/(0.083x450)^{-1}=74.7x10^{10}$	1/2 +1/2 +1			
	OR				
	i) solubility product	1			
	ii)Mg(OH) ₂ \rightleftharpoons Mg ²⁺ + 2(OH) ⁻ Ksp=[Mg ²⁺][OH ⁻] ²	1			
	$Ksp=[Mg^{2+}][OH^{-}]^2$	1			
	iii)pOH=1,pH=13	1/2+ 1/2			
	$iv)\alpha = \sqrt{Ka/c} = \sqrt{5.4 \times 10^{-4}/0.02} = 0.1643$	1			
SET A26	a) Anode: $2CH_3COO^- \rightarrow 2CH_3 + 2CO_2$	½ each			
SET B26					
SET C25	$2CH_3 \rightarrow C_2H_6$				
	Cathode: $H_2O + e \rightarrow OH^- + H^-$				
	$2 \text{ H} \rightarrow \text{H}_2$				
	b) Metallic sodium or tollens test	1			
	c) Cis trans but-2-ene	2			
	OR				
	i) Propanone and ethanal	2			
	ii) C ₆ H ₆	1			
	iii) Nitration				
	iv) Benzene has 6πe[n=1]	1			
CET A 27	a) :) to many over intenfering a : 1 1 1-1: 1 - :	1			
SET A27	a) i) to remove interfering cyanide and sulphide ions	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$			
SET B25	ii) aniline is high boiling/ steam volatile/immiscible in water	l			
SET C26	iii)Nitro is electron withdrawing and stabilizes the ion by decreasing the e	1			
	density whereas alkyl group is electron releasing and increases e density and				
	has lesser stability	1			
	b) Hyperconjugation is defined as delocalization of the σ e of C-H bond of an	1			
	alkyl group directly attached to an atom of unsaturated system or to an				
	atom with an unshared p orbital.				

	hyperconjugation in but-1-ene	1
	OR	
i)	resonance aniline	2
ii)	chain - butanol/2-Methylpropanol/2,2-Dimethylethanol	1
	functional-butanol and methoxy propane/ethoxyethane	1
iii)	electromeric effect-complete transfer of π e to one of the atoms joined by	1
	multiple bonds on the demand of attacking agent.	