INDIAN SCHOOL MUSCAT

FINAL TERM EXAMINATION
FEBRUARY 2019

CLASS XI
 Marking Scheme - CHEMISTRY [THEORY]

Q.NO.	Answers	$\begin{aligned} & \text { Marks } \\ & \text { (with split } \\ & \text { up) } \end{aligned}$
SET A1	Ununbium, Uub	$1 / 2+1 / 2$
SET B5	OR	
SET C2	($\mathrm{n}-1)^{1 / 10} \mathrm{~ns}^{1-2}$	1
SET A2	$\mathrm{BiH}_{3}, \mathrm{SbH}_{3}, \mathrm{AsH}_{3}, \mathrm{PH}_{3}, \mathrm{NH}_{3}$	1
SET B3		
SET C4		
SET A3	4 s has lower ($\mathrm{n}+\mathrm{l}$) value hence lower energy and filled before 3d	1
SET B1		
SET C5		
SET A4	4f,14e	$1 / 2+1 / 2$
SET B2	Or	
SET C3	Diagram	
SET A5	Statement	1
SET B4		
SET C1		
SET A6	Minimum energy required to eject electrons from the surface of a metal	1
SET B12	Node-3D region around the nucleus where probability of finding electron is zero	1
SET C9		
SET A7	Ethene -sp ${ }^{2}$ hybridised[energy level +orbital dia]	2
SET B11	OR	
SET C10	ClF_{3}-3bp,2lp	1
	$\mathrm{H}_{3} \mathrm{O}^{+}-3 \mathrm{bp}, 1 \mathrm{lp}$	1
SET A8	$\Delta \mathrm{H}=[615+4 \times 414+3 \mathrm{x} 498]-[4 \times 741+4 \times 464]=-1055 \mathrm{~kJ} / \mathrm{mol}$	$1 / 2+1 / 2+1$
SET B10	$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}=77200-[400 \times 122]=28400 \mathrm{~J} / \mathrm{mol}$	
SET C11		$1 / 2+1 / 2+1$
SET A9	Any two	1 each
SET B9		
SET C12		
SET A10	a)3-Ethyl-6-methylhept-3-enal	1
SET B8	b)5-Methylhexan-3-one	1
SET C7		
SET A11	$\mathrm{m}=1000 \times 3 / 1000 \times 1.25-3 \times 58.5=2.79 \mathrm{moles} / \mathrm{kg}$	$1 / 2+1 / 2+1$
SET B7		
SET C6		
SET A12	a) $\lambda=\mathrm{h} / \mathrm{mv}=6.6 \times 10^{-34} / 2.2 \times 10^{-3} \times 300=1 \times 10^{-29} \mathrm{~m}$	$1 / 2+1 / 2$

$\begin{aligned} & \hline \text { SET B6 } \\ & \text { SET C8 } \\ & \hline \end{aligned}$	b) $\mathrm{E}=\mathrm{h} u=6.6 \times 10^{-34} \times 3 \times 10^{15}=19.8 \times 10^{-19} \mathrm{~J}$	$1 / 2+1 / 2$
SET A13 SET B20 SET C18	a)Different species with same electronic configuration. Na^{+}[any one] b) cations have greater effective nuclear charge per e	$\begin{aligned} & 1+1 \\ & 1 \end{aligned}$
SET A14 SET B21 SET C19	a) central atom contains more than $8 \mathrm{e} \mathrm{PCl}_{5}, \mathrm{SF}_{6}$ b) NH_{3}, as the dipoles are arranged along the same direction OR i)any one difference ii) $\mathrm{Be}_{2}: \sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma^{*} 2 \mathrm{~s}^{2}$ B. $O=4-4 / 2=0$	$\begin{aligned} & \hline 1+1 \\ & 1 / 2+1 / 2 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$
$\begin{aligned} & \hline \text { SET A15 } \\ & \text { SET B19 } \\ & \text { SET C23 } \end{aligned}$	a) difference b)12-16 compounds are formed by group 12 elements and group 16 elements with a valence of four e OR i) no force of attraction or repulsion between gas molecules/volume of gas are negligible ii) $2 \mathrm{xM}_{\mathrm{ox}}=5 \mathrm{x} 28$ $\mathrm{M}_{\mathrm{ox}}=70 \mathrm{~g} / \mathrm{mol}$	$1+1$ 1 1 1 1
SET A16 SET B17 SET C15	$\begin{aligned} & \mathrm{d}=\mathrm{zM} / \mathrm{a}^{3} \mathrm{~N}_{\mathrm{a}} \\ & \mathrm{M}=6.22 \times\left(4.077 \times 10^{-8}\right)^{3} \times 6.022 \times 10^{23} / 4=63.459 \mathrm{~g} \\ & \mathrm{r}=\mathrm{a} / 2 \sqrt{ } 2=4.077 \times 10^{-8} / 2 \sqrt{2}=1.4 \times 10^{-8} \mathrm{~cm} \end{aligned}$	$1 / 2$ each
SET A17 SET B18 SET C20	a) At absolute zero, entropy of a perfectly crystalline substance is zero b) derivation $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
SET A18 SET B15 SET C14	$\begin{aligned} & \mathrm{Cr}(\mathrm{OH})_{3} \rightarrow \mathrm{CrO}_{4}{ }^{2-} \\ & \mathrm{IO}_{3}{ }^{-} \rightarrow \mathrm{I}^{-} \\ & 2 \mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{IO}_{3}^{-} \rightarrow \mathrm{I}^{-}+2 \mathrm{CrO}_{4}^{2-}+4 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O} \\ & 2 \mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{IO}_{3}{ }^{-}+4 \mathrm{OH}^{-} \rightarrow \mathrm{I}^{-}+2 \mathrm{CrO}_{4}^{2-}+5 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	$1 / 2$ $1 / 2$ 1 1
$\begin{aligned} & \text { SET A19 } \\ & \text { SET B16 } \\ & \text { SET C13 } \end{aligned}$	a) Li due to small size can't stabilize larger peroxide ion b) alkaline earth metals contain two electrons per element to show greater metallic property c) KHCO_{3} is soluble and can't be precipitated	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$
SET A20 SET B14 SET C16	a) $\mathrm{SiO}_{4}{ }^{4-}$ b) zeolites are aluminosilicates eg: ZSM-5/any eg	$\begin{aligned} & 1 \\ & 1+1 \end{aligned}$
$\begin{aligned} & \text { SET A21 } \\ & \text { SET B13 } \\ & \text { SET C17 } \end{aligned}$	a) $\mathrm{P}_{4}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{PH}_{3}+3 \mathrm{NaH}_{2} \mathrm{PO}_{2}$ b) $2 \mathrm{BF}_{3}+6 \mathrm{NaH} \rightarrow \mathrm{B}_{2} \mathrm{H}_{6}+6 \mathrm{NaF}$ c) $\mathrm{SiO}_{2}+\mathrm{HF} \rightarrow \mathrm{SiF}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ Structures	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \text { each } \end{aligned}$
$\begin{aligned} & \hline \text { SET A22 } \\ & \text { SET B22 } \\ & \text { SET C24 } \\ & \hline \end{aligned}$	a)i)carbonates and sulphates of calcium and magnesium ii)hydrogen carbonates of calcium and magnesium b) compounds of hydrogen with p-block elements.	$1 / 2+1 / 2$ 1

	e rich: $\mathrm{H}_{2} \mathrm{O}$ [any two] e deficient: BH_{3} e presice $: \mathrm{CH}_{4}$	1/2 each
$\begin{aligned} & \hline \text { SET A23 } \\ & \text { SET B24 } \\ & \text { SET C22 } \end{aligned}$	$\mathrm{X}=\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{Y}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$, equations OR equations	$\begin{array}{\|l\|} \hline 1+1+1 \\ 1 \text { each } \\ \hline \end{array}$
SET A24 SET B23 SET C21	a)BOD is the amount of oxygen required by the bacteria to break down the organic matter present in certain volume of a sample of water. b)When excess of fertilizers are washed into water bodies it causes a dense growth of plant which kills the organisms by depriving them of oxygen and leads to loss of biodiversity- Eutrophication c)Green chemistry is the utilization of the existing knowledge and principles of chemistry to reduce the adverse impact on environment.	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 \end{array}$
$\begin{aligned} & \text { SET A25 } \\ & \text { SET B27 } \\ & \text { SET C27 } \end{aligned}$	a) LeChatelier's b) i) r_{f} increases ii) r_{b} increases c) $\mathrm{Kc}=2 \times 10^{10} /(0.083 \times 450)^{-1}=74.7 \times 10^{10}$ i) solubility product ii) $\mathrm{Mg}(\mathrm{OH})_{2} \leftrightharpoons \mathrm{Mg}^{2+}+2(\mathrm{OH})^{-}$ $\mathrm{Ksp}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$ iii) $\mathrm{pOH}=1, \mathrm{pH}=13$ iv) $\alpha=\sqrt{\mathrm{Ka}} / \mathrm{c}=\sqrt{5} .4 \times 10^{-4} / 0.02=0.1643$	$\begin{array}{\|l\|} \hline 1 \\ 1+1 \\ 1 / 2+1 / 2+1 \\ 1 \\ 1 \\ 1 \\ 1 / 2+1 / 2 \\ 1 \end{array}$
SET A26 SET B26 SET C25	a) Anode: $2 \mathrm{CH}_{3} \mathrm{COO}^{-} \rightarrow 2 \mathrm{CH}_{3}{ }^{-}+2 \mathrm{CO}_{2}$ $2 \mathrm{CH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$ Cathode : $\mathrm{H}_{2} \mathrm{O}+\mathrm{e} \rightarrow \mathrm{OH}^{-}+\mathrm{H}^{-}$ $2 \mathrm{H}^{-} \rightarrow \mathrm{H}_{2}$ b) Metallic sodium or tollens test c) Cis trans but-2-ene i) Propanone and ethanal ii) $\mathrm{C}_{6} \mathrm{H}_{6}$ iii) Nitration iv) Benzene has $6 \pi \mathrm{e}[\mathrm{n}=1$]	$1 / 2$ each 1 2 2 1 1 1
SET A27 SET B25 SET C26	a) i) to remove interfering cyanide and sulphide ions ii) aniline is high boiling/ steam volatile/immiscible in water iii)Nitro is electron withdrawing and stabilizes the ion by decreasing the e density whereas alkyl group is electron releasing and increases e density and has lesser stability b) Hyperconjugation is defined as delocalization of the σ e of C-H bond of an alkyl group directly attached to an atom of unsaturated system or to an atom with an unshared p orbital.	1 1 1 1

	hyperconjugation in but-1-ene		1
	i) OR	resonance aniline chain - butanol/2-Methylpropanol/2,2-Dimethylethanol ii) functional-butanol and methoxy propane/ethoxyethane electromeric effect-complete transfer of π e to one of the atoms joined by multiple bonds on the demand of attacking agent.	1

